Big O Notation practice
Step One: Simplifying Expressions
- O(n + 10) -->
O(n)
- O(100 * n) -->
O(n)
- O(25) -->
O(1)
- O(n^2 + n^3) -->
O(n^3)
- O(n + n + n + n) -->
O(n)
- O(1000 * log(n) + n) -->
O(n)
- O(1000 * n * log(n) + n) -->
O(n log n)
- O(2^n + n^2) -->
O(2^n)
- O(5 + 3 + 1) -->
O(1)
- O(n + n^(1/2) + n^2 + n * log(n)^10) -->
O(n^2)
Step 2: Calculating Time Complexity
- function logUpto(n) -->
O(n)
- function logAtLeast10(n) -->
O(n)
- function logAtMost10(n) -->
O(1)
- function onlyElementsAtEvenIndex(array) -->
O(n)
- function sbutotals(array) -->
O(n^2)
- function vowelCount(str) -->
O(n)
Part 3 - short answer
- True
- True
- False
- O(n)
- O(n)
- O(n)
- O(n log n)
- O(n)
- O(n)
- O(1)
- O(n)
- O(n)